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J .  Phys. A: Math. Gen. 18 (1985) 1435-1447. Printed in Great Britain 

Combinatorial formulae for one-dimensional generalised 
random walks 

P L Leatht and P M DuxburyS 
t Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey, 08854, USA 
$ Department of Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK 

Received 24 October 1984 

Abstract. The calculation of ensemble averages in one-dimensional walks with weights 
given by exp[-g Z ( t ~ ~ ) ~ ] ,  where n ,  is the number of times a site is visited, is simplified by 
reducing the problem to one of calculating binomial factors for partitions and their 
permutations. The combinatorial factors are generalised to the case of Cayley trees and 
all lattices without closed loops. In one dimension the combinatorial formulae are shown 
to reduce the known cases when a = 0 and a = 1 .  We also use these formulae to extend 
the exact enumeration results, for the one-dimensional generalised random walk, from 2 1 
to 29 terms: and the series are analysed using Pad6 approximant techniques. 

1. Introduction 

Random walk models are relevant to many physical situations. Two fundamental 
examples are the use of the ordinary random walk (ORW) to model Brownian motion, 
and the use of the self-avoiding walk (SAW) to model the behaviour of polymer chains 
in dilute solution (for reviews see Barber and Ninham (1970), Whittington (1982), 
Weiss and Rubin (1982) and for recent applications of random walks in random 
environments see Weiss (1983)). 

Over the years, and especially recently, several generalisations of the ORW and SAW 

have appeared in the literature. The motivation for the introduction of the generalised 
walks has been varied, and in the main the generalised walks have been treated 
separately. In a previous paper Duxbury et al (1984) made a comparative study of 
several generalised random walks with a view to determining the quantities which 
affect the asymptotic properties of these models. It was suggested that, in addition to 
dimensionality, the important quantities in the weight given to an interacting random 
walk are: 

(a)  the range of the memory; 
(b) whether the memory is cumulative or not; 
(c) whether the normalisation condition in the walk is local (static) or global 

(kinetic). 
In a second paper, Duxbury and de Queiroz (1985) made these ideas quantitative 

by introducing a generalised static random walk with infinite-range memory. The 
properties of this model were studied using effective-medium arguments and exact 
enumeration methods. In dimensions greater than one it was found that, for repulsive 
correlations, Flory-like arguments predict exponents which vary continuously with the 
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1436 P L Leath and P M Duxbury 

parameter cy (see equation ( 1 ) in Q 2).  In one dimension they found that, for attractive 
correlations, the model exhibits anomalous trapping for g > 0 and  1 3 a > 0. 

In this paper we further study the generalised random walk introduced in Duxbury 
and de  Queiroz i 1985). It is shown that the problem of calculating ensemble averages 
for the one-dimensional random walk can be reduced to calculating partitions into the 
number of steps on each bond, and associating with them multiplicities which are 
calculated from binomial factors on  all permutations of each partition. This analogy 
is explained in $ 2. In this section it is also shown how our formulae reduce to known 
cases when a = 0 (the interacting walk of Stanley et al (1983), asymptotically solved 
by Redner and Kang (l983)),  and a = 1 (the ORW case). In $ 2  we further show that 
the combinatorial analysis used on the one-dimensional chain can be generalised to 
the case of Cayley trees and all lattices without closed loops. 

In Q 3, the combinatorial formulae derived in Q 2 are used to perform exact enumer- 
ations on the one-dimensional generalised random walk. To carry out these calculations 
we need a computer algorithm for generating all ways of putting m indistinguishable 
objects in S- 1 boxes. The approach discussed in § 2 allows us to extend the exact 
enumeration results from the 21 terms, found in the previous paper (Duxbury and d e  
Queiroz 1985), to 29 terms. We also refine the analysis by using Pad6 techniques as 
well as the Neville tables used previously. These analyses support the effective-medium 
prediction that for g > 0 and 1 2  cy > 0 the end-to-end distance exponent, and the span 
exponent, vary continuously with a. 

The final section, $4, gives our conclusions. 

2. Derivation of the combinatorial formulae 

The generalised random walk introduced in Duxbury and de  Queiroz (1985) and 
further studied in this work, is one in which each of the 2” walks of N steps on a 
one-dimensional chain are weighted with a probability given by, 

where n, is the number of times the ith site is visited during the walk, S (the span) is 
the total number of different bonds visited, and  g and a are variable parameters. In 
order to study the properties of an esemble of walks with weights ( I ) ,  we study the 
generating function (or partition function), 

the average span (maximum distance from left to right) of a walk, 

@ V )  = z- I SwalkPwalk 
{malks)  

(3) 

(we note that the number of distinct sites visited is S w a [ k +  1, and in fact use this quantity 
in the series analysis) and the average squared end-to-end distance of a walk, 

In (2)-(4) the sum over {walks} goes over all 2N N-step walks on  a one-dimensional 
chain. 
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In the previous work (Duxbury and de  Queiroz 1985) the calculations were 
performed by enumerating all 2 N  possible walks and storing them according to which 
partition, on the total number of steps, they corresponded. Here we show that the 
problem of performing the ensemble averages in ( 2 ) - ( 4 )  can, in essence, be reduced 
to finding all ways of partitioning M ( = ( N - 2 S +  R ) / 2 ,  where R is the end-to-end 
distance of the walk, S is the span and N is the total number of steps) objects into S 
boxes, and then calculating a product of binomial factors for each possible arrangement 
of each partition on M .  The total number of distinct configurations which need be 
considered in calculating ( 2 ) - ( 4 )  is reduced from 2 N  to a number which is bounded 
above by N x22wi3 ,  

To see how the reduction in the number of configurations considered arises, consider 
a one-dimensional random walk of N steps, with range R and span S. A walk with 
specified span S and range R has to perform a minimum number of steps to satisfy 
these conditions; this minimum walk forms the backbone of the walk. An example 
for a walk with range two and span five is shown in figure 1. After laying down the 
backbone (figure 1 ( a ) ) ,  2 M = N - 2S + R steps remain to be distributed. These remain- 
ing 2 M  steps may be laid down in pairs, but otherwise at random, amongst the S 
bonds available on the backbone. However for each partition and  permutation on 
M (=(N - 2 S +  R ) / 2 )  there may be many associated random walks. Indeed it is this 
degeneracy which effects the reduction in the number of configurations that need be 
enumerated in a series analysis. Consider the backbone in figure l ( a )  and  the 
{ O ,  1, 0, 1,O) partition of figure l ( b )  placed on it (where each number in the partition 
denotes the number of pairs of steps placed on that bond). The random walks 
represented by this backbone and this partition then have 12 steps in all. The four 
different random walks associated with this backbone and partition are shown in figure 
l ( c ) .  In this example the four distinct walks arise because there are two ways of 

f 

Figure 1. 12 step, one-dimensional random walks with span five and range two. ( a )  The 
backbone, ( b )  the dressed backbone, ( c )  the four different random walks corresponding 
to the partition {0, 1.0, 1, O}. 
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ordering the vertex at site 2 and two ways of ordering the vertex at site 5 .  In fact 
total number of different random walks associated with a backbone and partition 
is a product of factors at each internal vertex of the graph. It then remains to find the 
factor appropriate to a general vertex. 

For a general vertex there are fixed constraints in that the initial entrance to, and 
final exit from, the vertex are specified from the neighbouring vertices (if the vertex 
being considered is the starting (ending) point of the walk only the final exit (initial 
entrance) is constrained). In addition each general exit has associated with it an 
entrance which ensures that the span and range constraints are satisfied. The remaining 
free paths exiting to the left of the vertex we call n, and those to the right n,. The total 
number of different ways of ordering the entering and leaving the vertex is then 

n , + n ,  n , + n ,  
c l=(  n, ) = (  n, ). ( 5 )  

As an example consider a vertex at site j to the left of the initial site i, and where 
the final site f is to the right of i, with two pairs of bonds to the left of the vertex and 
three pairs of bonds to the right of the vertex. The constraint is that the initial approach 
to, and the final exit from, the vertex must be to the right; so n, = 2 and n, = 2 and the 
combinatorial factor for the vertex is c = (:) = 6. These six arrangements are illustrated 
in figure 2 .  

F F  *? ,?$% 
Figure 2. The six different one-dimensional random walk configurations possible at a 
vertex, which lies to the left of the starting site i, with two pairs of steps to the left and 
three pairs of steps to the right. 

Thus a one-dimensional graph with N steps, range R, span S and specified partition 
on M has associated with it 

different random walks, where n: and n," are respectively the number of free paths 
to the left and right of vertex k. To be more specific, consider the graph in 
figure 3, which depicts walks starting at 3, ending at site 6 and with span 3. 
The number of walks corresponding to this diagram is calculated using equation (6) 
in terms of the { m k }  as follows, 

k = 1 , 2 , .  . . , f 
k= f + l , .  . . , S-1 
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1 2 3 4 5 6 7 8 9 

Figure 3. A graph for one-dimensional random walks with span eight, range three and 
partition { 1,2,0,  1,2, 1, 1,3}. This graph represents 1620 different random walks. 

Figure 4. A random-walk vertex on a z = 3 Cayley tree. 

The resulting number of walks associated with this diagram is then 

The number of partitions that must be summed for a given M and S is clearly the 
number of ways of putting M = ( N  - 2 S  + R ) / 2  indistinguishable pairs of steps onto 
the S bonds of the chain. This number is easily seen to be the binomial coefficient, 

Therefore, summing over the span S, range R and the starting site i, we find the total 
number T (  N )  of terms, which are to be evaluated in the series analysis, to be 

N / 2  S / 2  

S / 2 = 0  R / 2 = O  

N / 2 - l  ( S - I ) / Z  

( S - I ) / 2 = 0  R / 2 = 0  
+ ( S - R + l ) ( N / 2 + R ' 2 - 1 )  S-1 

where, for simplicity, we have chosen N (and therefore R )  to be even, where the first 
sum in equation (10) is for even values of S and the second sum is over odd values 
of S, and where (S- R + 1) is the maximum number of different starting sites i, for 
given values S and R. The first sums over R can be easily performed exactly, using 
the identity, 
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with the result that the two terms in equation (10) can be combined to give 

S / 2 = i  

The second sum diverges as (N/8)2"/'  for large N. An upper bound can be put on 
the first sum by noting that ( ( N + : ) / 2 )  has its maximum value at N = 3 s  and by Stirling's 
approximation, for large N, it takes on the value 2 2 N / 3 .  Therefore, the exact number 
of terms to be summed numerically is reduced from 2 N  to a number of the order of 2 2 N ' 3 .  

The combinatorial formulae for the one-dimensional walks can be easily generalised 
to the case of Cayley trees and lattices without loops. For example, consider a Cayley 
tree with z = 3. A vertex for such a lattice is shown in figure 4. In the case depicted 
the walk first enters the vertex from one of the three sides and leaves from another 
leg, and there are no, n,, n2 free exits to be ordered in all possible ways on the three 
sides. The appropriate combinatorial factor for each vertex then becomes the trinomial 
coefficient, 

( n , + n , + n , ) !  
n,!n,!n,! . 

c. = 

For a general vertex at site j with coordination number z (and provided the lattice 
has no closed loops), the appropriate factor is the multinomial coefficient, 

( n o + n , +  . . .+ n,-,)! 
n0!n,!n2!. . . n,-,! . CJ = 

For the whole graph the combinatorial factor is again a product over the factors at 
each internal vertex of the graph. 

We now indicate how the approach described above coincides, when a = 0 and 
a = 1, with exact results. The case a = 0 reduces to calculating the span distribution 
function, which can be performed exactly by a variety of methods (see for example 
Weiss and Rubin 1982). The case a = 1 makes all of the walk weights equal and thus 
is equivalent to the ORW on a one-dimensional chain (Duxbury and de Queiroz 1985). 
For simplicity we consider the special case of closed walks or walks on polygons 
( R  = 0, or i =f), which start and finish at site 0. 

In the case of polygons, for a walk of span S, there are 2s steps needed for the 
backbone, so that the addition of M pairs of steps to the S bonds makes N = 2M + 2s 
total steps. The partition function becomes, using equations ( 1 )  and ( 6 )  

where the k integral ensures 
m,,, = -1 and n, = p i  + 1. 

mi = M. Here p i  = mi + mi+, + 1 for all i, with ma = 0, 

For the special cases a = 0 and a = 1, the weight factor reduces as follows 

The weight factor W can now be taken outside the { ml}  sums and integral in (15); 
which may now be rewritten as 

z, =c ISW (17) 
s 
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where the sum is over all spans S = 1 to N / 2  and I s  is given by, 

" 
I S =  [ d k  exp(-ikM) 2 exp(ikm,) 

--s ml 

Each of the sums in brackets can be performed using the identity 

Carrying out these sums, we arrive at the following expression for I,, 

exp[ -ik( M + S)] -x 

l s = [  d k  
-E 1 - A  

1 -A 
1 -A 

where there are S factors of A = exp(ik) in the continued fraction denominator. This 
equation may be written as 

1 "  
2T -a 

I = - [  dkexp[- ik(M+S)]G&(k) 

where G&( k) is just the (0,O) element of the Green function defined by its inverse 

[G5(  k)]-' = I, - exp( ik/2)T5 (22) 

where I, is the (S+ 1)  x(S+ 1) identity matrix and T, is the ( S +  1 )  x (S+  1) transfer 
matrix for walks of maximum span S, defined by 

1 0 1 0 0 . . 0  O l  r 0 1 0 0 0 . .  

0 t o  I O  . 
T, = 

. 0 1 0  

The occurrence of the (0,O) element of the Green function in the expression (21) is 
due to the fact that the analysis was restricted to polygons. If we had considered walks 
starting at i and finishing at f; the appropriate expression would have been (21) with 
the (0,O) element of the Green function replaced by the (i, f )  element. It is now clear 
that the above method reduces to the transfer-matrix approach of the span problem 
treated by many other authors (see, e.g., Weiss and Rubin 1982), and could be used 
to reconstruct the existing results by standard methods. 
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Finally, to clarify the relationship of equation (21) consider the determinant 

a l a O O . . O  
1 a O O O . .  

. . . . . .  l a  
O O O O O O a l  

Expanding the determinant, it is clear that, with a = exp(ik/2) 

1G-'l=101=111-a2(2/ (25) 

where lil is the determinant remaining after the first i rows and  i columns have been 
deleted. In this notation, we see that the (0,O) element of G is given by, 

However, surely 121/111 can be calculated by expanding 111 just as in equation (25) so 
that after S times, we find the continued fraction given in equation (20). 

3. Series generation and analysis 

The series are generated for each value of g and  a in equation ( 1 )  by running through 
all possible spans (S) and ranges ( R )  and for each S and R and the different starting 
points (the T ( N )  terms of equation ( lo ) ) ,  using the combinatorial analysis of the 
previous section. For fixed S and R there are ('l-s,+i), where M = ( N - 2 S + R ) / 2 ,  
different permutations of the M pairs which may be arranged arbitrarily. This section 
of the procedure may be programmed efficiently by mapping each integer between 1 
and ("i?;') onto a unique arrangement of a partition on M. This programming is 
done by letting the first bond take on all numbers of pairs of steps mi for O s  m i  s M ,  
then for each m i ,  letting mz take on all values OS mi s M - m,, and so forth, with 
OS m,+i  S M m,. It is straightforward to show that, in general, the program 
steps through values of m, up  to the bond i = S- 1, which steps through the full 
range (":?;I) of formula (9). This results from the identity 

M + i  

which is a special case of equation ( 1  1 ) .  Finally, the last bond m, is fixed by the sum 
m, = M. Our subroutine which performs the unique transformation between an  

integer and  a partition on M is given in the appendix. 
Using the above technique the series for the one-dimensional generalised walks 

with weights given by equation ( l ) ,  have been calculated for walks of up  to 29 steps. 
Sample series for ( S N  + 1)  (these series were used in preference to the (S,) series as 
the Pad6 analysis shows less scatter) and  ( R k )  at a = 0,0.2,0.4,0.6,0.8 are given in 
table 1. We now use these series to further test the effective medium prediction that 
for g > 0 and  0 s a < 1 the model defined by equation ( 1 ) exhibits anomalous trapping 
with exponents which vary continuously according to s = v = ( 1  - a ) / ( 3  - a ) .  
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In a previous work (Duxbury and de Queiroz 1985), the ratio method was used in 
conjunction with Neville tables to obtain estimates of the end-to-end distance and 
span exponents. The results were subject to considerable scatter and it is useful to 
use an alternative method especially since there are now 29 terms available for analysis. 
Probably the most widely used extrapolation method in critical phenomena is the 
method of Pad6 approximants (see e.g. Gaunt and Guttmann 1976). It is possible to 
use this technique on the exact enumeration data available here by noting that if we 
have the sequence, 

a,,  a2,a3 , .  . ., a" (28) 

which is expected to asymptotically behave as 

a ,  = n x  (29) 

then its generating function has the following behaviour 

Table 1. Exact enumeration data for one-dimensional walks of up to 29 steps at g = 1.0 
and a = 0 ,  0.2, 0.4, 0.6, 0.8. ( a )  ( R t )  series, ( b )  ( S v + l )  series. 

( a )  

N a = O  a =0.2 a = 0.4 a = 0.6 a = 0.8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1.000 000 000 
1.075 765 685 
1.578 635 905 
1.727 203 932 
2.083 882 563 
2.260 781 703 
2.532 900 693 
2.702 247 649 
2.933 940 272 
3.085 724 368 
3.298 075 688 
3.433 781 905 
3.634 041 467 
3.757 733 828 
3.947 570 423 
4.062 92.5 767 
4.242 602 580 
4.352 303 826 
4.522 161 493 
4.627971 915 
4.788 706 28 1 
4.891 688 320 
5.044 238 609 
5.144 970 948 
5.290 353 944 
5.389 I I O  020 
5.528 300 606 
5.625 181 839 
5.759 049 567 

1.000 000 000 
1.196639 516 
I .7 I5 973 066 
1.896 568 134 
2.260 705 265 
2.434 454 666 
2.709 965 535 
2.865 681 734 
3.092 669 440 
3.228 271 931 
3.427 597 227 
3.546 007 544 
3.727 321 447 
3.832 430 602 
4.000031 819 
4.095 241 352 
4.251 246 819 
4.339 178 086 
4.484 938 398 
4.567 499 588 
4.704 128 236 
4.782 657 505 
4.91 1 183 379 
4.986 589 461 
5.107976 153 
5.180 857 955 
5.295 989 713 
5.366 73 1 977 
5.476 400 284 

1.000 000 000 
1.344 605 929 
I .903 982 552 
2.149 5 I2 075 
2.540 064 241 
2.736 393 098 
3.029 164712 
3.188316988 
3.422 I86 558 
3.552 326 912 
3.748 714 309 
3.856 817 794 
4.027 527 843 
4.1 19 126 474 
4.270 901 840 
4.350 163 093 
4.487 135 216 
4.557 136 386 
4.682 067 305 
4.745 067 153 
4.859 959 836 
4.917 612 938 
5.024 01 1 433 
5.077 527 524 
5.176669952 
5.226 931 5 5 5  
5.319 834 018 
5.367 483 843 
5.454 991 325 

1.000 000 000 
1.524 964 665 
2.162758 615 
2.531 822 343 
2.992 872 028 
3.268439515 
3.617 660 171 
3.827 362 293 
4.101 775 252 
4.263418318 
4.485 490 576 
4.61 1 734 376 
4.795 733 674 
4.895 702 512 
5.051 118090 
5.131 424328 
5.264 845 472 
5.330 320 150 
5.446 491 769 
5.500 697 413 
5.603 135 570 
5.648 722 234 
5.740090 114 
5.779 043 828 
5.861 392 778 
5.895 211 190 
5.970 142 283 
5.999 960 688 
6.068 737 I13 

1.000 000 000 
1.742 537 635 
2.518 218 705 
3.1 14 872 039 
3.744 468 474 
4.231 146 890 
4.749 97 I 096 
5.148 534344 
5.579 977 542 
5.906 845 482 
6.267 740 074 
6.535 904 572 
6.839 015 681 
7.058 907 778 
7.314270 722 
7.494 340 600 
7.710 030 438 
7.857 175 036 
8.039 785 005 
8.159 667 868 
8.3 14 630 983 
8.41 1 924 586 
8.543 744 441 
8.622 316 983 
8.734 741 584 
8.797 803 481 
8.893 960 620 
8.944 181 134 
9.026 686 182 
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Table 1. (continued) 

(6) 
~ 

N a = O  a = 0.2 a = 0.4 a = 0.6 a =0.8 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

2.000 000 000 
2.268 941 421 
2.537 882 843 
2.774 440 958 
3.015 978 739 
3.201 628 276 
3.404 368 778 
3.552 216 073 
3.724 806 699 
3.850712233 
4.001 936 174 
4.115 133450 
4.250 327 091 
4.355 006 696 
4.477 364 189 
4.575 333 576 
4.687 1 I5 007 
4.779 292 953 
4.882 324 610 
4.969 343 795 
5.065 145 527 
5.147 540 234 
5.237 346 950 
5.315 594717 
5.400 377 05 I 
5.474903 618 
5.555 406 415 
5.626 587 405 
5.703 377 188 

2.000 000 000 
2.299 159 879 
2.598 319 758 
2.834 727 335 
3.077 656 376 
3.259 538 646 
3.457 509 690 
3.602 488 830 
3.768 762 833 
3.891 220 279 
4.035 298 537 
4.143 650 574 
4.27 I 286 520 
4.369 878 090 
4.484 606 847 
4.575 688 189 
4.679 926 263 
4.764 795 569 
4.860 374 65 1 
4.939 907 593 
5.028 289 932 
5.103 156352 
5. I85 520 984 
5.256 268 662 
5.333 558 649 
5.400 647 836 
5.473 609 656 
5.537 431 248 
5.606 652 461 

2.000 000 000 
2.336 151 482 
2.672 302 964 
2.916 277 384 
3.167 142 122 
3.350 770 347 
3.548 838 359 
3.694 563 928 
3.858001 716 
3.979 890 02 I 
4.1 19 422 138 
4.225 502 561 
4.347 519 900 
4.442 296 878 
4.550 8 I 1 730 
4.636 923 824 
4.734 658 470 
4.813 781 098 
4.902 719 140 
4.976 01 3 86 I 
5.057 671 339 
5.126002965 
5.201 568 164 
5.265 612 148 
5.336 027 045 
5.396 326 777 
5.462 342 027 
5.519 343 982 
5.581 559 261 

2.000 000 000 
2.381 241 166 
2.762 482 332 
3.026 774 209 
3.296 700 039 
3.493 596 163 
3.701 915 377 
3.857 728 252 
4.026 929 647 
4.1 56 079 93 1 
4.298 347 721 
4.408 982 187 
4.531 554 582 
4.628 534 664 
4.736 054 014 
4.822 481 567 
4.918 I27 927 
4.996 I 15 699 
5.082 182 324 
5.153 250380 
5.231 453 I I9 
5.296 741 738 
5.368 397 562 
5.428 788 670 
5.494 926 788 
5.551 I I8 032 
5.612 553 879 
5.665 106 791 
5.722 493 914 

2.000 000 000 
2.435 634 409 
2.871 268 817 
3.176116268 
3.483 821 792 
3.717 164952 
3.956 856 000 
4.145 674 087 
4.341 864 086 
4.500 187 744 
4.665 731 700 
4.801 656 809 
4.944 276 103 
5.062 930 997 
5.187 702 239 
5.292 588 612 
5.403 067 587 
5.496714018 
5.595 506 231 
5.679 814 297 
5.768 893 037 
5.845 335 986 
5.926 233 722 
5.995 978 889 
6.069 909 624 
6.133 898 343 
6.201 839 590 
6.260841 791 
6.323 591 516 

Both the ( S ,  + 1) and ( R h )  series are expected to have this behaviour, with x being 
the exponents s and 2v respectively. Evaluations at z =  1 of Pad6 approximants to 
the derivative of the log (DLOG PadC’s) of the generating function provide estimates 
of x +  1 and  hence afford the required extrapolations to s and v. This analysis is 
illustrated in tables 2 and 3 where the z = 1 evaluations of DLOG PadC’s for generalised 
random walk series at a = 0 and a = 0.4, and g = 1.0 in both cases, are presented. In 
table 4 we give our estimates of s and v deduced from tables 2 and 3 along with 
estimates of s and v found from a similar analysis of generalised series at  different 
values of a (all analyses were performed for series at g = 1 .O). The effective-medium 
prediction is included for comparison. These results are similar to those found by 
Duxbury and  de  Queiroz (1985) using Neville table extrapolants on 21-term series. 
Neville tables applied to the longer series available here d o  not show any qualitative 
change in behaviour. For a greater than 0.5 however, the tables d o  overestimate the 
curvature quite badly. 

From table 4 it is seen that the estimates of the span exponent (s) are consistently 
higher than the effective medium prediction, while the estimates of the range exponent 
( v )  are consistently lower. Indeed the difference between v and s is larger in this 
calculation than was found by Duxbury and d e  Queiroz (1985). This result is surprising 
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Table 2. z = 1 evaluations of Pad6 approximants to log derivative series at g = 1.00 and 
a = 0. Tables gives results of n + I /  n Pad6 approximants, where n + I is the order of the 
numerator polynomial and n is the order of the denominator polynomial. ( a )  (RL) series, 
( b )  (S, + 1) series. 

~~ ~ 

n r = - 1  r = o  r = i  n r = - 1  l = O  I =  1 
__ 

6 
7 
8 
9 

I O  
I 1  
I2 
13 
14 

~~ 

1.572 1.573 
1.573 1.573 
1.579 1.574 
1.575 1.573 
1.572 1.575 
1.570 1.571 
1.570 1.571 
1.575 1.557 
1.596 1.557 

1.573 
1.576 
1.575 
1.561 
1.570 
1.570 
1.574 
1.594 

6 1.374 
7 1.379 
8 1.378 
9 1.408 

10 1.406 
1 1  I .37 1 
12 1.370 
13 1.373 
14 1.362 

1.378 
1.378 
1.381 
1.437 
1.373 
1.369 
1.370 
1.368 
1.368 

1.379 
1.255 
1.384 
1.377 
1.368 
1.372 
1.369 
1.370 

Table 3. z = I evaluations of Pad6 approximants to log derivative series at g = 1.00 and 
a = 0.4. Tables give results of ( n  + I ) / n  Pad6 approximants, where n + I is the order of the 
numerator polynomial and n is the order of the benominator polynomial. ( a )  ( R i m )  series, 
( b )  ( S ,  + I )  series. 

n 

6 
7 
8 
9 

10 
1 1  
12 
13 
14 

I = - I  

1.333 
1.335 
1.320 
1.317 
1.316 
1.256 
1.334 
1.430 
1.380 

r=o I = l  n / = - I  I = O  r = i  

1.329 
1.251 
1.317 
1.316 
1.317 
1.327 
1.339 
1.358 
1.358 

1.334 
1.319 
1.317 
1.316 
1.03 1 
1.334 
1.364 
1.363 

6 1.313 
7 1.316 
8 1.316 
9 1.294 

I O  1.283 
I I  1.285 
12 1.284 
13 1.282 
14 1.286 

1.313 1.312 
1.315 1.305 
1.230 1.288 
1.283 1.283 
1.283 1.284 
1.284 1.284 
1.284 1.276 
1.280 1.278 
1.280 

Table 4. Estimates of the asymptotic exponents Y and s for the one-dimensional walk, 
with g = 1.00, found from the Pad6 analysis, compared with the effective, medium predic- 
tions. 

0 0.29 0.37 0.333 
0.2 0.24 0.33 0.286 
0.4 0.18 0.28 0.231 
0.6 0.151 0.22 0.167 
0.8 0.05 0.17 0.091 

t This evaluation table was badly behaved. 

since more terms ( N  = 29 compared with N = 21) were evaluated and  a Pade analysis 
method was used. Thus, although we still believe that our results are consistent with 
the effective medium predictions Y = s = ( 1  - a ) / ( 3  - a ) ,  it would be useful to test the 
result further. 
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4. Conclusions 

It has been shown that the problem of calculating ensemble averages in a generalised 
random walk, on lattices without loops and with weights given by equation ( l ) ,  can 
be simplified by mapping the problem onto one of calculating combinatorial factors 
on each partition and permutation of M = ( N  - 2s + R ) / 2  into S boxes. These formulae 
are shown to reduce, in appropriate limits (a = 1 and a = 0), to the ORW and the 
weighted-span walk. These reductions illustrate interesting connections between the 
transfer matrix method, the Green function approach, and a new continued fraction 
representation of the span distribution function. 

Using the combinatorial formula derived in 0 2, we have been able to extend the 
series for the one-dimensional generalised random walk from 21 to 29 terms. Using 
these series, and Pad6 approximant extrapolation methods, we test the effective medium 
prediction that for g > 0 and 0 s a < 1 the model exhibits anomalous trapping with 
continuously varying exponents. The series results confirm the phenomenon of 
anomalous trapping, and the exponents do vary continuously. We also suggest that 
the series are consistent with the effective-medium prediction that s = Y = 
( 1  - a ) / ( 3 - a ) ,  although the results appear to suggest that s >  v, This behaviour is 
probably due to finite lattice and crossover effects. 
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Appendix 

A subroutine to convert a decimal number, ICON, into a 
set {mi}, where {mi} are a partition on ID. By running 
through all integers (ICON) in between 1 and (:I;), 
PERGEN generates all partitions and permutations on ID. 
On input ICON contains the integer, IS+ 1 is the span and 
I D =  M (see text). On putput the vector NP  contains the 
partition corresponding to ICON. The array NBINC(1, J) 
contains the binomial coefficient (:I;). 
SUBROUTINE PERGEN(ICON, ID, IS, NP, ISUM) 

COMMON/ DATA/ NBI NC (40, 40) 
DIMENSION NP(40) 
IF(ID.EQ.0) G O  TO 6 
IF(IS.EQ.1) GO TO 5 
ISUM = 0 
DO 3 J = 1 ,  IS-1 
ITOTl = 0 
ITOT = 0 

IMPLICIT DOUBLE PRECISION(A-H, 0-Y)  
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DO 1 ITO=1,  I D + l - I S U M  
ITOT=NBINC(ID-ISUM+IS-ITO-J+ 1,  IS-J)+ITOT 
IF(ICON.LE.ITOT) GO TO 2 
ITOTl = ITOT 

1 CONTINUE 
2 NP( J )  = I T 0  - 1 

ICON = ICON - ITOTl 
ISUM = ISUM+ NP(J) 
IF(ISUM.EQ.ID) GO TO 4 

3 CONTINUE 
4 NP( IS) = ID - ISUM 

GO TO 6 
5 NP( 1 )  = ID 
6 CONTINUE 

RETURN 
END 
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